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Geometric structure and
view invariant recognition

By Stefan Carlsson

Department of Numerical Analysis and Computing Science, Royal Institute of
Technology (KTH), S-100 44 Stockholm, Sweden

By organizing object recognition as indexing a look-up table of model object fea-
tures, it can be made effective in terms of time and memory complexity. However,
for general three-dimensional (3D) objects it is not possible to compute non-trivial
object-specific descriptors from a single view that are invariant to general choices
of viewpoint. This raises the question of how to effectively organize recognition of
3D objects from single views by making various compromises w.r.t. invariance and
efficiency of representations. For general shapes we can derive shape constraints, in-
variant to viewpoint and other camera parameters, that relate 3D and image struc-
ture. These relations can be used for verification of the presence in an image of a
specific 3D object but they do not allow for the computation of view invariant in-
dexes. In order to have an indexing system for recognition, there are basically two
alternative options: if we want complete view invariance we have to restrict the class
of objects. Alternatively, if we want methods that work for general unconstrained
object types, we have to restrict the range of viewpoints over which invariant de-
scriptors can be computed. We will see how this naturally leads to the introduction
of incidence and order structure respectively, as a basis for shape description. The
hierarchy of geometric structure descriptions: projective/affine, order and incidence
can all be described in a unified way in terms of properties of bracket expressions of
image coordinates in arbitrary frames.

Keywords: recognition; invariance; affine structure; projective structure; incidence
geometry; order structure

1. Introduction

The geometric shape that a three-dimensional (3D) object projects to an image de-
pends on the relative viewpoint, as well as on the internal parameters of the camera.
For parallel and perspective projection, the variation due to internal camera pa-
rameters can be accounted for by the use of affine and projectively invariant image
descriptors, respectively (Koenderink & van Doorn 1991; Sparr 1991; Faugeras 1992;
Hartley et al . 1992). The variation due to changes in relative viewpoint of the cam-
era is more complicated, however. Ideally one would like image descriptors that are
discriminating between different objects and also independent of the viewpoint. It
has been shown, however, that no such descriptors exists (Burns et al . 1993; Moses
& Ullman 1992). For a general set of points in 3D it is not possible to compute a
general view invariant, that is also discriminating w.r.t. other point-sets. Invariant
descriptors are useful in that they can be used as indexing keys to look-up tables
of object features, making the recognition efficient in terms of time and memory
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1234 S. Carlsson

complexity. The time efficiency comes from the fact that it is not necessary to match
all objects in the model library to image data and the memory efficiency from the
fact that all views of an object are represented by the invariants.

The non-existence of general view invariants of course raises the question of how to
most effectively organize recognition of 3D objects. We will see that the options avail-
able imply the sacrifice of some of the efficiency of an ideal view invariant indexing
system. We will look at three different cases:

1. There are general view invariant relations constraining affine, or projective 3D
and image structure for general shapes.
These relations can be used for viewpoint invariant verification but do not
admit the construction of indexing keys. The time efficiency of recognition is
therefore lost.

2. General view invariants can be computed for restricted shapes.
This will require a priori information about the nature of the shape restriction.
We will see that for sufficiently restricted shapes it is possible to identify the
type of shape restriction from incidence relations of an image in a single view.

3. Restricted view invariants can be computed for general shapes.
By extending the equivalence class of objects corresponding to a certain set of
image descriptors we can increase their view invariance properties. The problem
is then to choose descriptors so that equivalence classes are extended in a
reasonable way. We will argue that the concept of order structure is a natural
choice for a descriptor in this sense.

2. View invariant shape constraints for affine and projective structure

For points in general, position in three dimensions we will derive canonical projec-
tion relations involving affine and projective structure for parallel and perspective
camera projection models, respectively. As will be seen, these relations will make
explicit exactly how image structure depends on 3D structure and viewpoint. No
other internal or external camera parameters will appear in these relations.

(a) Parallel projection: affine structure

In the parallel projection case we use four points with Cartesian† coordinate vec-
tors P̄1, P̄2, P̄3, P̄4 to define affine coordinates in 3D (see Appendix A):

P̄n − P̄4 = X̄n(P̄1 − P̄4) + Ȳn(P̄2 − P̄4) + Z̄n(P̄3 − P̄4)

and the corresponding image points p̄1, p̄2 and p̄4 to define affine coordinates in the
image:

p̄n − p̄4 = x̄n(p̄1 − p̄4) + ȳn(p̄2 − p̄4).

For parallel projection, the relation between any coordinate representation in three
dimensions and the image can be written:

p̄n = M P̄n + m̄, (2.1)

† Cartesian coordinates are denoted by P̄ in order to distinguish them from homogeneous coordinates
in projective space denoted P .
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where M is a 2× 3 matrix and m̄ is a 2-vector. The vector m̄ can be eliminated by
taking differences:

p̄n − p̄4 = M(P̄n − P̄4). (2.2)

Using the affine coordinates defined in (2.1) we find that M must satisfy(
1 0 x̄3 0
0 1 ȳ3 0

)
= M

1 0 0 X̄0
0 1 0 Ȳ0
0 0 1 Z̄0

 , (2.3)

where X̄0, Ȳ0, Z̄0 are the affine coordinates of an arbitrary point on a line through
the origin point P4 in the view direction. The point (X̄0, Ȳ0, Z̄0) represents the view
direction and projects to the origin point (x̄4, ȳ4) = (0, 0).

Using the relations in equation (2.3) we can solve for the elements of the projec-
tion matrix M . If we take points 1, 2 and the ‘viewpoint’ 0 we get the projection
equations: (

x̄n
ȳn

)
= Z̄0

−1
(
Z̄0 0 −X̄0
0 Z̄0 −Ȳ0

)X̄n

Ȳn
Z̄n

 . (2.4)

This is the canonical projection equation for parallel projection. It relates affine
structure in 3D to that in the image depending on the view direction only. Using the
fact that (X̄3, Ȳ3, Z̄3) = (0, 0, 1) we get

x̄3 = −X̄0/Z̄0, ȳ3 = −Ȳ0/Z̄0. (2.5)

The fact that the view direction can be eliminated so easily in the parallel projection
is coupled to the fact that it can actually be determined uniquely from the observation
of four image points. We see that equation (2.5) implies

(X̄0, Ȳ0, Z̄0) = σ(−x̄3,−ȳ3, 1), (2.6)

where σ is an arbitrary scale factor.
In parallel projection we can compute affine information about the view direction

without any knowledge of the 3D structure of the point-set. Note that the sign of
the arbitrary factor σ in the view direction is connected with a ‘necker-reversal’ of
the 3D structure of the point-set.

If the view direction (2.6) is substituted in the projection equation (2.4) we get

x̄n − X̄n − x̄3Z̄n = 0,

ȳn − Ȳn − ȳ3Z̄n = 0,

}
(2.7)

which are relations constraining affine 3D and image structure in a view invariant
way. This form of the affine shape constraints was derived in Clemens & Jacobs
(1991). Equivalent relations for affine shape constraints were also derived in Weinshall
(1993). The linearity of the relations implies that image coordinates of any view can
be expressed as a linear combination of those of two other views (Ullman & Basri
1991).

These constraint equations can be used to verify the presence of an object with
known affine structure in a way that is totally independent of camera parameters and
viewpoint. Unless the affine structure is constrained, however, they do not permit
the explicit computation of view invariant descriptors from a single image.
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Figure 1. Affine basis in 3D and image for parallel projection.

If the affine coordinates are expressed in terms of brackets of normalized homoge-
neous coordinates in arbitrary frames (see Appendix A), using lower-case for image
coordinates, these constraints can be written as the bracket polynomials:

[2∗4∗5∗][1∗2∗3∗4∗]− [1∗2∗4∗][2∗3∗4∗5∗] + [2∗3∗4∗][1∗2∗4∗5∗] = 0,
[1∗4∗5∗][1∗2∗3∗4∗]− [1∗2∗4∗][1∗3∗4∗5∗] + [1∗3∗4∗][1∗2∗4∗5∗] = 0.

}
(2.8)

This form of the constraint equations makes explicit the fact that the constraints
are a property of a group of five points irrespective of the choice of coordinate frame.

(b) Perspective projection: projective structure

We use the homogeneous coordinates of five points P1, . . . , P5 to define a projective
coordinate system in 3D and the corresponding coordinates of image points p1, p2,
p3 and p4 to define a projective coordinate system in the image (see Appendix B).

The projective coordinates in 3D and the image are then related by a general linear
transformation given by the 3× 4 matrix M ,

p = MP,

which can be computed from the mappings:1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

 = M


1 0 0 0 X0
0 1 0 0 Y0
0 0 1 0 Z0
0 0 0 1 W0

 , (2.9)

where X0, Y0, Z0, W0 are the projective coordinates of the perspective projection
point in the five-point basis.
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If we solve for M we find that 3D and image homogeneous projective coordinates
are related by the canonical perspective projection equation:xnyn

wn

 = σ

X0
−1 0 0 −W0

−1

0 Y0
−1 0 −W0

−1

0 0 Z0
−1 −W0

−1



Xn

Yn
Zn
Wn

 .

We can write these relations in the form of constraint equations as

wn
Yn
Y0
− ynZn

Z0
+ (yn − wn)

Wn

W0
= 0,

wn
Xn

X0
− xnZn

Z0
+ (xn − wn)

Wn

W0
= 0.

 (2.10)

Note that this equation constrains 3D point position and the inverse of camera
position in exactly the same way. The problems of recovering 3D structure and
multiple camera positions from image data are therefore computationally dual for
the uncalibrated perspective camera (Carlsson 1995b; Carlsson & Weinshall 1998).
Specifically, using multiple image data we can eliminate the coordinates of the 3D
shape and get epipolar constraints relating camera positions and image data. Al-
ternatively, using multiple points in one image, we can eliminate camera positions
and get shape constraints, relating 3D and image structure. For multiple points,
5, 6, 7, . . . the constraint equations (2.10) can be written as the system

0 w5Y5 −y5Z5 (y5 − w5)W5
w5X5 0 −x5Z5 (x5 − w5)W5

0 w6Y6 −y6Z6 (y6 − w6)W6
w6X6 0 −x6Z6 (x6 − w6)W6

0 w7Y7 −y7Z7 (y7 − w7)W7
w7X7 0 −x7Z7 (x7 − w7)W7

...




X−1

0
Y −1

0
Z−1

0
W−1

0

 = 0. (2.11)

Since this system has rank < 4 any determinant formed by taking four arbitrary
rows of the system must vanish giving the shape constraint relations (Carlsson 1995b;
Weinshall et al . 1995; Carlsson & Weinshall 1998). These constraints are dual to the
multiple view matching constraints obtained in the same way (Faugeras & Mourrain
1995).

Using the fact that (X5, Y5, Z5,W5) = (1, 1, 1, 1) and taking the determinant of
the first four rows of equation (2.11) we get the shape constraint for six points

(w5y6 − x5y6)X6Z6 + (x5y6 − x5w6)X6W6 + (x5w6 − y5w6)X6Y6

+ (y5x6 − w5x6)Y6Z6 + (y5w6 − y5x6)Y6W6 + (w5x6 − w5y6)Z6W6 = 0.

This specific relation was derived in Quan (1994). Similar relations using a different
representation can be found in the work of Sparr (1991). In the same way as equa-
tion (2.7) these equations can be used to verify the presence in an image of an object
with a known projective structure independent of camera calibration and viewpoint.
If the projective coordinates are expressed in terms of brackets of Cartesian coor-
dinates in arbitrary frames (see Appendix B) and these are straightened using the
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Figure 2. Projective basis in 3D and image for perspective projection.

Plucker–Grassmann relations (Hodge & Pedoe 1947), this constraint can be written
as the bracket polynomial,

[1 3 6] [2 4 5] [1 2 4 6] [1 2 5 6] [1 3 4 5] [3 4 5 6]
−[1 2 6] [3 4 5] [1 3 4 6] [1 3 5 6] [1 2 4 5] [2 4 5 6]
+[1 3 4] [2 5 6] [1 2 4 6] [1 3 5 6] [1 2 4 5] [3 4 5 6]
−[1 2 4] [3 5 6] [1 3 4 6] [1 2 5 6] [1 3 4 5] [2 4 5 6]
+[1 3 5] [2 4 6] [1 3 4 6] [1 2 5 6] [1 2 4 5] [3 4 5 6]
−[1 2 5] [3 4 6] [1 2 4 6] [1 3 5 6] [1 3 4 5] [2 4 5 6] = 0. (2.12)

This form of the six point constraint has the advantage that it does not assume
the existence of a five point projective basis (Carlsson 1995a).

3. General view invariants for restricted shapes

The shape constraints (2.7) and (2.12) can be used to answer questions such as,
can this image be the projection of this 3D affine/projective shape, independent of
camera calibration and viewpoint? They do not, however, permit the construction
of view invariant indexing keys for table look-up. In order for this to be possible, we
would like to write the relations as

i(x1, y1 . . . xn, yn) = I(X1, Y1, Z1 . . . Xn, Yn, Zn), (3.1)

where the dependence on image and 3D data has been separated. This can be
achieved if we can solve for 3D structure in terms of image structure. This is of
course not possible in the case of general shapes, a mere consequence of the fact that
depth information is lost in the projection process. However, by adding extra shape
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Figure 3. Five points, 1, 3, 4, 5 coplanar.

constraints to the relations (2.7) and (2.12), i.e. by considering restricted instead of
general shapes, the 3D structure can be computed explicitly in terms of image struc-
ture. An important shape constraint is coplanarity, which is a projectively invariant
property for a set of points and thereby also affine invariant. Indeed, by restricting all
points in view to be coplanar, projective and affine image representations will be gen-
eral view invariants for the case of perspective and parallel projection respectively.
However, we will see that we can actually exploit also partial coplanarity constraints
in order to compute general view invariants.

(a) Parallel projection

Suppose we have five points in parallel projection where point 5 lies in the plane
spanned by points 1, 2 and 3. This means that the affine coordinate Y5 = 0. If we
use this together with the affine shape constraints from the image equation (2.7), we
get the linear system:

Y5 = 0,
x5 −X5 − x3Z5 = 0,
y5 − Y5 − y3Z5 = 0.

 (3.2)

The 3D affine structure can be computed by solving this for X5, Y5 and Z5

X5 =
x5y3 − x3y5

y3
, Y5 = 0, Z5 =

y5

y3
.

A single coplanarity constraint among five points therefore permits the computation
of 3D affine structure from a parallel projection image. That is, we can compute a
view invariant representation of the object from image data. Using equation (2.8)
and straightening the bracket expressions, these relations can be expressed in terms
of brackets of normalized homogeneous coordinates:

[2∗3∗4∗5∗]
[1∗2∗3∗4∗]

=
[3∗4∗5∗]

[1∗3∗4∗]
, [1∗3∗4∗5∗] = 0,

[1∗2∗4∗5∗]
[1∗2∗3∗4∗]

= − [1∗4∗5∗]

[1∗3∗4∗]
. (3.3)

(b) Perspective projection

In the case of perspective projection if we take six points and constrain them so
that we get two four-point coplanarities we get the so-called ‘butterfly’ configuration
(see figure 4).

The coplanarity constraints can be expressed in terms of brackets and after using
straightening relations, in terms of the projective coordinates as

[1346] = 0 =⇒ Y6 = 0,
[2456] = 0 =⇒ Z6 −X6 = 0.

}
(3.4)
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Figure 4. Six points, 1, 3, 4, 6 and 2, 4, 5, 6 coplanar.

If we add these constraints to the perspective projection six-point constraint (2.12)
we can solve for the projective structure of the six-point configuration:

X6

W6
=
Z6

W6
=
x6w5 − y6w5 + x5y6 − x5w6

x5y6 − y6w5
. (3.5)

Using the bracket expressions for the projective coordinates (Appendix B) this can
be written after straightening:

X6

W6
+ 1 =

Z6

W6
+ 1 =

[1256][1345]
[1245][1356]

=
[134][256]

[136][245]
. (3.6)

This can alternatively be derived directly from the bracket expression for the shape
constraint (2.12) using the coplanarity constraints equation (3.4).

The effect of coplanarity constraints in 3D has been analysed extensively for poly-
hedral type objects in Sugihara (1986), Sparr (1992) and Rothwell et al . (1993),
using various projection and calibration models.

(c) Bilateral symmetry: incidence structure

By introducing the extra constraint of coplanarity in three dimensions we saw
that it is possible to compute view invariants from image data and that these view
invariants are actually the affine/projective structure of the shape in three dimen-
sions. This introduces the problem, however, of deciding that a certain coplanarity is
present in three dimensions. For a general planar set of points in three dimensions,
there is no constraint in a single image that can be used to decide coplanarity among
the points. If the set of points is constrained even further, however, we will see that
this induces view invariant constraints in the image. This is the case for bilaterally
symmetric structures.

We take a six-point butterfly configuration and constrain it so that there is a
symmetry plane dividing the points into two groups, 1, 3, 5 and 2, 4, 6 (see figure 5).

By intersecting lines connecting various points we can generate points a, b, c and
d. The symmetry constraint in three dimensions implies that the three-dimensional
lines ab and cd both lie in the symmetry plane. They therefore intersect the line
34 in a common point q. The fact that q lies on the line 34 can be expressed as a
collinearity constraint of three image points as

[3 4 q]=0. (3.7)

The point q is the intersection of lines ab and cd in the image. The image coordinates
of q can therefore be expressed using the Grassmann–Cayley algebra meet operation
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Figure 5. Six points 1 . . . 6 in bilateral symmetry.

(Barnabei et al . 1985; Carlsson 1994), as

q=ab∧cd=[a b c] d−[a b d] c. (3.8)

If this is substituted in (3.7) we get

[a b c] [3 4 d]−[a b d] [3 4 c]=0. (3.9)

Points a, b, c and d can be expressed as intersections:

a=13∧24=[1 2 3] 4+[1 3 4] 2,

b=14∧23=[1 2 4] 3−[1 3 4] 2,

c=36∧45=[3 4 6] 5−[3 5 6] 4,

d=35∧46=[3 4 5] 6+[3 5 6] 4.

If these are substituted in (3.9), we get after factoring out common factors

[1 2 3] ([2 4 5] [3 4 6]−[2 4 6] [3 4 5])+[1 2 4] ([2 3 5] [3 4 6]−[2 3 6] [3 4 5] )

=[1 2 3] [4 5 6]−[1 2 4] [3 5 6]=0, (3.10)

where we have used a straightening operation in the last step. This is a viewpoint
invariant constraint on six image points 1 . . . 6 that is fulfilled if the six points form a
bilateral symmetry as defined above. It can therefore be used to verify the presence
of a bilateral symmetry from image data in one perspective projection.

This expression can be given another even simpler geometric interpretation. by
factorizing into the expression

12 ∧ 34 ∧ 56=[1 2 3] [4 5 6]−[1 2 4] [3 5 6]=0. (3.11)
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Figure 6. Shapes with different order and incidence structure.

Geometrically this means the condition for the three lines 12, 34 and 56 to intersect
in a common point. In our case this point is the vanishing point since the three lines
are parallel in three dimensions due to the symmetry constraint.

Note that we can carry out exactly the same reasoning for the case where we have
a symmetry plane along the line 34 with points 12 and 56 symmetrically related,
giving the same symmetry constraint. The constraint (3.10) represents an example
of view invariant image incidence structure. In the next section we shall see how
the concept of qualitative structure can be extended from incidence structure of
projected constrained shapes to order structure of generic shapes in projection.

4. Restricted view invariants for general shapes

(a) Order structure

The fact that general view invariants can be defined for restricted 3D shapes is of
limited use when considering general shapes. For general shapes, any image descriptor
will have to display variation w.r.t. change of viewpoint or will otherwise be useless
for discrimination purposes. We could always assign the same descriptor to any view
of any object, giving us complete view invariance but no discrimination between
different objects. This illustrates the fact that in general, discriminability and view
invariance are conflicting objectives in recognition. A direct indexing method must
therefore be a compromise between these objectives.

Any descriptor that is used as an indexing key to a look-up table will by defini-
tion be discrete. A straightforward way to define discrete descriptors is to quantize
continuous image measurements, possibly linear invariants, into discrete bins as is
done in geometric hashing (Lamdan et al . 1988). Any quantization strategy will then
define equivalence classes of image structure that give rise to the same discrete index.
Ideally these equivalence classes should contain as many views as possible of a spe-
cific object. This inevitably implies loss in discriminability relative to other objects,
i.e. the equivalence classes have to be enlarged.

A crucial step in the design of an indexing system based on image measurements
is therefore to ensure that the necessary enlargement of the equivalence classes is
based on a relevant similarity measure. A natural extension of equivalence classes is
to consider object categories. Although it is not possible to give a strict geometric
definition of the concept of object category, it is generally believed that one needs
representations based on qualitative, relational properties as opposed to metrical
descriptions used to define object instances (Marr & Nishihara 1981; Biederman
1985). The introduction of incidence structure in the previous section is a step in
this direction but it applies only to restricted shapes. For general shapes the concept
of order structure of groups of features can be used to describe qualitative properties.
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Figure 7. Examples of order and incidence types for triplets of line segments.

Figure 6 shows a sequence of five-point configurations that are successively deformed.
These configurations are all completely characterized by the order and incidence
structure given by the mapping

χ(i, j, k) = sgn[i∗ j∗ k∗] −→ {−1, 0, 1} (4.1)

for all combinations of points i, j, k ∈ {1, 2, 3, 4, 5}, where i∗ denotes the oriented
homogeneous coordinates of point i as defined in Appendix A (Björner et al . 1993).
Any planar n-point configuration in three dimensions has a specific order type (Good-
man & Pollack 1983), which is invariant to changes in viewpoint that do not intersect
the 3D plane containing the configuration. It therefore shares essentially the same
view invariance properties as affine and projective representations of planar point-
sets. For non-planar point-sets the order type of the image will be invariant over
restricted changes of viewpoint. The change of order type with viewpoint coincides
with the accidental alignment of three points. The concept of order type therefore
captures the idea of qualitative image structure as defined for the aspect graph of
an object (Koenderink & van Doorn 1979).

(b) Using order and incidence structure for indexing

The use of qualitative geometric properties as a basis for recognition is generally
based on perceptual grouping of low level primitives into higher order structures
(Lowe 1984; Havaldar et al . 1996). This is often a difficult problem, mainly due
to the fact that geometric features extracted from image data are often noisy and
fragmented. The fact that order structure can be defined for general groups of features
implies in principle that we can avoid the step of perceptual grouping. In practise,
however, it turns out that the order types are unevenly distributed and we have
to discard the most frequent ones since they are too ambiguous and give too many
false matches. This can be seen as a soft way to introduce perceptual grouping, i.e.
selecting only the most informative order types.

Order structure is a property of combinations of features, encoded by bracket ex-
pressions of coordinates in the same way as projective affine and incidence structure.
The invariance properties of the order and incidence type of groups of features make
them interesting for use as an index to a table of model features for a restricted view
invariant recognition system. In Carlsson (1996), order and incidence type of configu-
rations for line segments were considered. Using the endpoints of the segments, order
and incidence structure can be defined in the same way as for point configurations
(see figure 7).
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Figure 8. Order and incidence type indexing.

Recognition using order and incidence type for indexing proceeds in the same way
as in geometric hashing (Lamdan et al . 1988) (see figure 8).

1. The line triplets of a certain geometric view model of an object are stored in a
look-up table with the order and incidence type as the look-up key.

2. Line triplets are extracted from an image and the order and incidence type is
computed.

3. Line triplets with most common order and incidence types are discarded due
to their poor discrimination properties.

4. This order and incidence type is used to index the look-up table and a vote is
given for each association of image segment and model segment in that specific
table position.

5. A matching score between the image and a certain model is computed based
on the total number of votes between image and model segments, normalized
w.r.t. the total number of segments.

It should be noted that the order and incidence type of a triplet can be ambigu-
ous due to imperfect data and the necessity to threshold when evaluating incidence
relations. In these cases multiple weighted order and incidence type hypotheses are
generated.

The resulting matching score for various views of a chair using a simple chair
model are shown in figure 9. Also shown are the matching scores for various views
of an unrelated object. The results verify that order and incidence structure have
interesting restricted view invariant properties. Note that the views of the chair that
are ‘qualitatively similar’ to the model view receive relatively higher matching scores.
(It should be pointed out that the model has a dual 3D interpretation due to a necker
reversal.) Different instances of chairs give similar responses of matching scores to
this model (Carlsson 1996).

5. Summary and conclusions

I have discussed the view invariance properties of various geometric structure repre-
sentations. For projective/affine structure it is possible to derive shape constraints
that relate 3D and image structure in a view invariant way. These constraints can be
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Figure 9. Matching scores for various views using indexing-based order and incidence structure.

used for verification of the presence of a specific object but not for direct indexing.
In order to perform indexing-based recognition we have to restrict either the objects
or the range of viewpoints. Restricted objects give rise to view invariant incidence
structure in the image and order structure of geometric image features can be used
for restricted view invariant recognition. All structure descriptors and constraints
can be represented in a unified way using properties of brackets of image coordinates
in arbitrary coordinate frames.

This work was supported by the ESPRIT-BRA project VIVA and by the Swedish Foundation
for Strategic Research under the Centre for Autonomous Systems contract.

Affine coordinates
The affine transformation group in two dimensions can be expressed using non-

homogeneous Cartesian coordinates as

p̄′ = Ap̄+ b, ( 1)

where A and b are a general 2× 2 matrix and 2-vector respectively.
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The Cartesian coordinate vectors p̄i of three points can be used to construct an
affine basis. Any other vector can then be expressed as

p̄n − p̄3 = x̄an(p̄1 − p̄3) + ȳan(p̄2 − p̄3), ( 2)

where x̄an, ȳan are affine invariants, or affine coordinates. If we solve for these in terms
of the Cartesian coordinates p̄1 . . . p̄n, we get

x̄an =
[p̄n − p̄3, p̄2 − p̄3]
[p̄1 − p̄3, p̄2 − p̄3]

=

[
p̄2 p̄3 p̄n
1 1 1

]
[
p̄1 p̄2 p̄3
1 1 1

] =

[
2∗3∗n∗

][
1∗2∗3∗

] ,
ȳan =

[p̄n − p̄3, p̄1 − p̄3]
[p̄1 − p̄3, p̄2 − p̄3]

=
[
p̄1 p̄3 p̄n
1 1 1

][
p̄1 p̄2 p̄3
1 1 1

]
=

[
1∗3∗n∗

][
1∗2∗3∗

] .


( 3)

The bracket [. . . ] is used for the determinant function det(. . . ). The invariance over
affine transformations follows from the fact that the determinant of the transfor-
mation matrix A can be factored out and cancelled. Note that we have used the
notation i∗ for the homogeneous coordinate pi normalized with wi = 1.

Projective coordinates
Projective transformations are general linear, non-singular transformations T of

points in homogeneous coordinates:

p′ = T p. ( 1)

The invariants of this transformation can be represented using projective coordinates.
These can be defined using four points p1, p2, p3, p4 in projective 2-space as a basis
in the following way. An arbitrary point pn can be expressed in this basis as

pn = xpn[2 3 4]p1 − ypn[1 3 4]p2 + wpn[1 2 4]p3, ( 2)

where the factors [ijk] are used to make pn homogeneous, i.e. arbitrary scalings of
the homogeneous coordinates pi imply the same scaling of pn.
xpn, y

p
n, w

p
n are the homogeneous projective coordinates of the point pn in the basis

p1, p2, p3, p4. They can be expressed explicitly in terms of the Cartesian coordinates
pi by considering equation ( 2) as a linear system and solving it. We can directly
compute the determinants

[2 3 n] = xpn[2 3 4][1 2 3],
[1 3 n] = ypn[1 3 4][1 2 3],
[1 2 n] = wpn[1 2 4][1 2 3].

 ( 3)

Disregarding the common factor [1 2 3] we get

xpn =
[2 3 n]
[2 3 4]

, ypn =
[1 3 n]
[1 3 4]

, wpn =
[1 2 n]
[1 2 4]

. ( 4)

By taking ratios we can form the absolute projective coordinates

xpn
wpn

=
[2 3 n][1 2 4]
[2 3 4][1 2 n]

,

ypn
wpn

=
[1 3 n][1 2 4]
[1 3 4][1 2 n]

.

 ( 5)
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It is easy to verify that any linear transformation applied to the Cartesian coordi-
nates pi will leave these coordinates invariant since the determinant of the transfor-
mation can be factored out and cancelled.

[T p1 T p2 T p3] = [T ][p1 p2 p3]. ( 6)

Each invariant is the ratio of two polynomials in the Cartesian coordinates pi. The
polynomials are homogeneous in the same degree of each coordinate which means
that their scaling will not affect the ratio.
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Discussion

A. Zisserman (Department of Engineering Science, University of Oxford, UK ).
The 3D symmetric point configuration Dr Carlsson described was a ‘butterfly’. It
is known that a projective invariant can be measured for this configuration from a
single perspective image. Are there any examples of non-butterfly bilateral symmetric
point configurations for which an invariant can be measured from a single image?

S. Carlsson. Yes, for a configuration of six points with four in one plane, defining
a plane of symmetry, and with the other two symmetrically placed on each side. For
example, points placed at the the vertices of a regular octahedron. It is possible to
write down an invariant image constraint for this structure.

J. L. Mundy (GE Corporate Research and Development, Niskayuna, NY, USA).
Stefan, you were somewhat critical of Jacobs’s idea of storing the affine observa-
tions in a look-up table because of the cost of memory. However, I would argue the
following: first, I believe that this idea can be generalized quite a bit to where we
store affine information about more arbitrary surfaces than just point-sets and also
that we can recover the viewpoint from the stored observations. Then as long as two
objects don’t look the same from the same viewpoint we will have successful index-
ing. It seems to me actually a very small price to pay for the memory and storage
to achieve that. Secondly, if you look today, people are storing image manifolds of
hundreds of images and using that essentially as a database, so storing the affine
point information pales into insignificance in cost by comparison with that.
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S. Carlsson. Jacobs notes that you run into problems with too many point com-
binations unless you perform some kind of perceptual grouping first. I suppose it is
not the cost of memory that is the problem but rather the fact that there will be too
many false matches.

T. Kanade (Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA).
Is more than one concept, like stability or robustness, of the invariants needed? In the
sense that in reality, the detection may or may not be stably robust. Once Katsushi
Ikeuchi and I did some work in the area of synthetic aperture radar image detection.
We didn’t systematically pursue it, as Dr Carlsson has, but that kind of concept
seems to be useful and I wonder whether there has been any work to study that type
of idea.

S. Carlsson. As far as I know there has been no systematic evaluation of the robust-
ness of incidence constraints. There will be many situations where the presence of an
incidence is uncertain. In those cases it is necessary to generate multiple hypotheses,
i.e. allowing both for the presence and non-presence of the incidence.

D. Foster (Aston University, UK ). The notion of an intermediate class of represen-
tations, somewhere between metric and incidence, seems particularly appropriate for
describing human object and pattern recognition. Order relations have been used in
modelling the approximate invariance of human recognition to small global transfor-
mations, i.e. limited translations, dilations, and rotations within the frontoparallel
plane (e.g. < 20◦), as well as to large global transformations, such as reflections
about the vertical or horizontal midline, or 180◦ rotations in the plane (Foster 1991).
They can also be used to explain the efficient discrimination of patterns subjected
to local reflections (Hummel & Stankiewicz 1996), and failures in recognition under
global 90◦ planar rotations. These order relations do, however, depend on the marked
anisotropy of human vision, in which the vertical and horizontal midlines and the
point of gaze have a special status (Attneave & Curlee 1977).

S. Carlsson. The experiments reported in Carlsson (1996) actually used a partly
calibrated camera aligned parallel to the ground which permitted the definition of
a vertical direction and ordering relations relative to this. This turned out to be
very effective in terms of reducing ambiguity in the feature matching and thereby
increasing overall performance.

A. Fitzgibbon (Department of Engineering, University of Oxford, UK ). There is
a sense in which view-based vision explores the aspect graph of the point-set and
has to store some sort of invariant per node in the aspect graph. Now, even at
full complexity, the aspect graph is only polynomial in k, whereas Dr Carlsson is
suggesting that the number of order relations may be exponential in k. Is there not
some similarity between searching the aspect graph and generating all these order
relations?

S. Carlsson. The problems are related but not identical. The aspect graph problem
for k− 1 points is essentially the problem of finding various order types for k points
given that the first k − 1 points are fixed, i.e. a restricted version of the order type
problem for k points. The complexity of the k-point aspect graph is therefore lower
than for the k-point order type.
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W. Triggs (INRIA, France). Intuiting the way that I recognize things, it seems
to me that besides order structure I also use a qualitative idea of how far things
are from each other, without really going to strict metric invariant type structures.
Would Dr Carlsson like to speculate on this?

S. Carlsson. There is some kind of region between strict order structure and metric
that we don’t really know how to characterize. What do we mean by large and things
like that?

W. Triggs. One hesitates to say the word fuzzy in a meeting like this . . .

S. Carlsson. Size concepts are in general relative. When we say large we essentially
always mean large relative to something else, and that means that we’re talking about
order structure.
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